Abstract
AbstractSolar-thermal storage with phase-change material (PCM) plays an important role in solar energy utilization. However, most PCMs own low thermal conductivity which restricts the thermal charging rate in bulk samples and leads to low solar-thermal conversion efficiency. Here, we propose to regulate the solar-thermal conversion interface in spatial dimension by transmitting the sunlight into the paraffin-graphene composite with side-glowing optical waveguide fiber. This inner-light-supply mode avoids the overheating surface of the PCM, accelerates the charging rate by 123% than that of the traditional surface irradiation mode and increases the solar thermal efficiency to ~94.85%. Additionally, the large-scale device with inner-light-supply mode works efficiently outdoors, indicating the potential of this heat localization strategy in practical application.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献