Abstract
AbstractRare earth (RE)–transition metal (TM) ferrimagnetic alloys are gaining increasing attention because of their potential use in the field of antiferromagnetic spintronics. The moment from RE sub-lattice primarily originates from the 4f-electrons located far below the Fermi level (EF), and the moment from TM sub-lattice arises from the 3d-electrons across the EF. Therefore, the individual magnetic moment configurations at different energy levels must be explored to clarify the microscopic mechanism of antiferromagnetic spin dynamics. Considering these issues, here we investigate the energy-level-selective magnetic moment configuration in ferrimagnetic TbCo alloy. We reveal that magnetic moments at deeper energy levels are more easily altered by the external magnetic field than those near the EF. More importantly, we find that the magnetic moments at deeper energy levels exhibit a spin-glass-like characteristics such as slow dynamics and magnetic moment freezing whereas those at EF do not. These unique energy-level-dependent characteristics of RE-TM ferrimagnet may provide a better understanding of ferrimagnet, which could be useful in spintronic applications as well as in spin-glass studies.
Funder
National Research Foundation of Korea
KAIST-funded Global Singularity Research Program for 2021
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献