Abstract
Abstract
Artificial intelligence (AI) has demonstrated promise in predicting acute kidney injury (AKI), however, clinical adoption of these models requires interpretability and transportability. Non-interoperable data across hospitals is a major barrier to model transportability. Here, we leverage the US PCORnet platform to develop an AKI prediction model and assess its transportability across six independent health systems. Our work demonstrates that cross-site performance deterioration is likely and reveals heterogeneity of risk factors across populations to be the cause. Therefore, no matter how accurate an AI model is trained at the source hospital, whether it can be adopted at target hospitals is an unanswered question. To fill the research gap, we derive a method to predict the transportability of AI models which can accelerate the adaptation process of external AI models in hospitals.
Funder
U.S. Department of Health & Human Services | NIH | National Center for Advancing Translational Sciences
Patient-Centered Outcomes Research Institute
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
74 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献