Broadband multi-magnon relaxometry using a quantum spin sensor for high frequency ferromagnetic dynamics sensing

Author:

McCullian Brendan A.ORCID,Thabt Ahmed M.,Gray Benjamin A.,Melendez Alex L.,Wolf Michael S.,Safonov Vladimir L.,Pelekhov Denis V.,Bhallamudi Vidya P.ORCID,Page Michael R.ORCID,Hammel P. ChrisORCID

Abstract

AbstractDevelopment of sensitive local probes of magnon dynamics is essential to further understand the physical processes that govern magnon generation, propagation, scattering, and relaxation. Quantum spin sensors like the NV center in diamond have long spin lifetimes and their relaxation can be used to sense magnetic field noise at gigahertz frequencies. Thus far, NV sensing of ferromagnetic dynamics has been constrained to the case where the NV spin is resonant with a magnon mode in the sample meaning that the NV frequency provides an upper bound to detection. In this work we demonstrate ensemble NV detection of spinwaves generated via a nonlinear instability process where spinwaves of nonzero wavevector are parametrically driven by a high amplitude microwave field. NV relaxation caused by these driven spinwaves can be divided into two regimes; one- and multi-magnon NV relaxometry. In the one-magnon NV relaxometry regime the driven spinwave frequency is below the NV frequencies. The driven spinwave undergoes four-magnon scattering resulting in an increase in the population of magnons which are frequency matched to the NVs. The dipole magnetic fields of the NV-resonant magnons couple to and relax nearby NV spins. The amplitude of the NV relaxation increases with the wavevector of the driven spinwave mode which we are able to vary up to 3 × 106 m−1, well into the part of the spinwave spectrum dominated by the exchange interaction. Increasing the strength of the applied magnetic field brings all spinwave modes to higher frequencies than the NV frequencies. We find that the NVs are relaxed by the driven spinwave instability despite the absence of any individual NV-resonant magnons, suggesting that multiple magnons participate in creating magnetic field noise below the ferromagnetic gap frequency which causes NV spin relaxation.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3