Sulfide catabolism ameliorates hypoxic brain injury

Author:

Marutani Eizo,Morita Masanobu,Hirai Shuichi,Kai ShinichiORCID,Grange Robert M. H.,Miyazaki Yusuke,Nagashima Fumiaki,Traeger Lisa,Magliocca Aurora,Ida Tomoaki,Matsunaga Tetsuro,Flicker Daniel R.,Corman Benjamin,Mori Naohiro,Yamazaki Yumiko,Batten Annabelle,Li RebeccaORCID,Tanaka TomohiroORCID,Ikeda TakamitsuORCID,Nakagawa Akito,Atochin Dmitriy N.,Ihara HideshiORCID,Olenchock Benjamin A.,Shen Xinggui,Nishida MotohiroORCID,Hanaoka KenjiroORCID,Kevil Christopher G.ORCID,Xian Ming,Bloch Donald B.,Akaike Takaaki,Hindle Allyson G.ORCID,Motohashi HozumiORCID,Ichinose FumitoORCID

Abstract

AbstractThe mammalian brain is highly vulnerable to oxygen deprivation, yet the mechanism underlying the brain’s sensitivity to hypoxia is incompletely understood. Hypoxia induces accumulation of hydrogen sulfide, a gas that inhibits mitochondrial respiration. Here, we show that, in mice, rats, and naturally hypoxia-tolerant ground squirrels, the sensitivity of the brain to hypoxia is inversely related to the levels of sulfide:quinone oxidoreductase (SQOR) and the capacity to catabolize sulfide. Silencing SQOR increased the sensitivity of the brain to hypoxia, whereas neuron-specific SQOR expression prevented hypoxia-induced sulfide accumulation, bioenergetic failure, and ischemic brain injury. Excluding SQOR from mitochondria increased sensitivity to hypoxia not only in the brain but also in heart and liver. Pharmacological scavenging of sulfide maintained mitochondrial respiration in hypoxic neurons and made mice resistant to hypoxia. These results illuminate the critical role of sulfide catabolism in energy homeostasis during hypoxia and identify a therapeutic target for ischemic brain injury.

Funder

Ministry of Education, Culture, Sports, Science and Technology

MEXT | JST | Core Research for Evolutional Science and Technology

U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute

U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences

U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke

NSF | BIO | Division of Integrative Organismal Systems

Japan Agency for Medical Research and Development

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3