Abstract
AbstractCoherent interaction between matter and light field induces both optical Stark effect and Bloch–Siegert shift. Observing the latter has been historically challenging, because it is weak and is often accompanied by a much stronger Stark shift. Herein, by controlling the light helicity, we can largely restrict these two effects to different spin-transitions in CsPbI3 perovskite quantum dots, achieving room-temperature Bloch–Siegert shift as strong as 4 meV with near-infrared pulses. The ratio between the Bloch–Siegert and optical Stark shifts is however systematically higher than the prediction by the non-interacting, quasi-particle model. With a model that explicitly accounts for excitonic effects, we quantitatively reproduce the experimental observations. This model depicts a unified physical picture of the optical Stark effect, biexcitonic optical Stark effect and Bloch–Siegert shift in low-dimensional materials displaying strong many-body interactions, forming the basis for the implementation of these effects to information processing, optical modulation and Floquet engineering.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献