Abstract
AbstractHomomorphic encryption performs computations on encrypted data without decrypting, thereby eliminating security issues during the data communication between clouds and edges. As a result, there is a growing need for homomorphic encryption hardware (HE-HW) for the edges, where low power consumption and a compact form factor are desired. Here, a Pt/Ta2O5/Mo metallic cluster-type memristors (Mo-MCM) characterized by the Mo as a mobile species, and its utilization for the HE-HW via a 1-trasistor-1-memristor (1T1M) array as a prototype HE-HW is proposed. The Mo-MCM exhibits inherent stochastic set-switching behavior, which can be utilized for generating the random numbers required for encryption key generation. Furthermore, the device can accurately store analog conductance states after set-switching, which can be used as an analog non-volatile memristor. By simultaneously leveraging these two characteristics, encryption key generation, data encryption, and decryption are possible within a single device through an in-memory computing manner.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献