Abstract
AbstractPrefrontal cortex (PFC) is thought to support the ability to focus on goal-relevant information by filtering out irrelevant information, a process akin to dimensionality reduction. Here, we test this dimensionality reduction hypothesis by relating a data-driven approach to characterizing the complexity of neural representation with a theoretically-supported computational model of learning. We find evidence of goal-directed dimensionality reduction within human ventromedial PFC during learning. Importantly, by using computational predictions of each participant’s attentional strategies during learning, we find that that the degree of neural compression predicts an individual’s ability to selectively attend to concept-specific information. These findings suggest a domain-general mechanism of learning through compression in ventromedial PFC.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
82 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献