Abstract
AbstractAlthough alkaline sensation is critical for survival, alkali-activated receptors are yet to be identified in vertebrates. Here, we showed that the OTOP1 channel can be directly activated by extracellular alkali. Notably, OTOP1 biphasically mediated proton influx and efflux with extracellular acid and base stimulation, respectively. Mutations of K221 and R554 at the S5–S6 and S11–S12 linkers significantly reduced alkali affinity without affecting acid activation, suggesting that different domains are responsible for acid- and alkali-activation of OTOP1. The selectivity for H+ was significantly higher in OTOP1 activated by alkali than that by acid, further suggesting that the two activations might be independent gating processes. Given that the alkali-activation of OTOP1 and the required key residues were conserved in the six representative vertebrates, we cautiously propose that OTOP1 participates in alkaline sensation in vertebrates. Thus, our study identified OTOP1 as an alkali-activated channel.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献