Abstract
AbstractCortical neural circuits are complex but very precise networks of balanced excitation and inhibition. Yet, the molecular and cellular mechanisms that form the balance are just beginning to emerge. Here, using conditional γ-aminobutyric acid receptor B1- deficient mice we identify a γ-aminobutyric acid/tumor necrosis factor superfamily member 12-mediated bidirectional communication pathway between parvalbumin-positive fast spiking interneurons and oligodendrocyte precursor cells that determines the density and function of interneurons in the developing medial prefrontal cortex. Interruption of the GABAergic signaling to oligodendrocyte precursor cells results in reduced myelination and hypoactivity of interneurons, strong changes of cortical network activities and impaired social cognitive behavior. In conclusion, glial transmitter receptors are pivotal elements in finetuning distinct brain functions.
Funder
Deutsche Forschungsgemeinschaft
Bundesministerium für Bildung und Forschung
Romanian UEFISCDI
University of Saarland Medical Faculty (HOMFORExzellent 2017) University of Saarland
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献