Abstract
AbstractPlanar super-oscillatory lens (SOL), a far-field subwavelength-focusing diffractive device, holds great potential for achieving sub-diffraction-limit imaging at multiple wavelengths. However, conventional SOL devices suffer from a numerical-aperture-related intrinsic tradeoff among the depth of focus (DoF), chromatic dispersion and focusing spot size. Here, we apply a multi-objective genetic algorithm (GA) optimization approach to design an apochromatic binary-phase SOL having a prolonged DoF, customized working distance (WD), minimized main-lobe size, and suppressed side-lobe intensity. Experimental implementation demonstrates simultaneous focusing of blue, green and red light beams into an optical needle of ~0.5λ in diameter and DOF > 10λ at WD = 428 μm. By integrating this SOL device with a commercial fluorescence microscope, we perform, for the first time, three-dimensional super-resolution multicolor fluorescence imaging of the “unseen” fine structures of neurons. The present study provides not only a practical route to far-field multicolor super-resolution imaging but also a viable approach for constructing imaging systems avoiding complex sample positioning and unfavorable photobleaching.
Funder
the Innovation and Technology Commission of Hong Kong
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献