Efficacy of the tetravalent protein COVID-19 vaccine, SCTV01E: a phase 3 double-blind, randomized, placebo-controlled trial

Author:

Zhang Ruizhi,Zhao Junshi,Zhu Xiaoping,Guan Qinghu,Liu Shujun,Li Meihong,Gao Jianghua,Tan Jie,Cao Feng,Gan Beifang,Wu Bo,Bai Jin,Liu Youquan,Xie Gang,Liu Chi,Zhao Wei,Yan Lixin,Xu Shuping,Qian Gui,Liu Dongfang,Li Jian,Li Wei,Tian Xuxin,Wang Jinling,Wang Shanshan,Li Dongyang,Li Jing,Jiao Yuhuan,Li Xuefeng,Chen Yuanxin,Wang Yang,Gai Wenlin,Zhou Qiang,Xie LiangzhiORCID

Abstract

AbstractEvolution of SARS-CoV-2 variants emphasizes the need for multivalent vaccines capable of simultaneously targeting multiple strains. SCTV01E is a tetravalent COVID-19 vaccine derived from the spike protein of SARS-CoV-2 variants Alpha, Beta, Delta, and Omicron BA.1. In this double-blinded placebo-controlled pivotal efficacy trial (NCT05308576), the primary endpoint was vaccine efficacy (VE) against COVID-19 seven days post-vaccination in individuals without recent infection. Other endpoints included evaluating safety, immunogenicity, and the VE against all SARS-CoV-2 infections in individuals meeting the study criteria. Between December 26, 2022, and January 15, 2023, 9,223 individuals were randomized at a 1:1 ratio to receive SCTV01E or a placebo. SCTV01E showed a VE of 69.4% (95% CI: 50.6, 81.0) 7 days post-vaccination, with 75 cases in the placebo group and 23 in the SCTV01E group for the primary endpoint. VEs were 79.7% (95% CI: 51.0, 91.6) and 82.4% (95% CI: 57.9, 92.6), respectively, for preventing symptomatic infection and all SARS-CoV-2 infections 14 days post-vaccination. SCTV01E elicited a 25.0-fold higher neutralizing antibody response against Omicron BA.5 28 days post-vaccination compared to placebo. Reactogenicity was generally mild and transient, with no reported vaccine-related SAE, adverse events of special interest (AESI), or deaths. The trial aligned with the shift from dominant variants BA.5 and BF.7 to XBB, suggesting SCTV01E as a potential vaccine alternative effective against present and future variants.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3