Abstract
AbstractFrom grain boundaries and heterojunctions to manipulating 2D materials, solid-solid interfaces play a key role in many technological applications. Understanding and predicting properties of these complex systems present an ongoing and increasingly important challenge. Over the last few decades computer simulation of interfaces has become vastly more powerful and sophisticated. However, theoretical interface screening remains based on largely heuristic methods and is strongly biased to systems that are amenable to modelling within constrained periodic cell approaches. Here we present an unconstrained and generally applicable non-periodic screening approach for systematic exploration of material’s interfaces based on extracting and aligning disks from periodic reference slabs. Our disk interface method directly and accurately describes how interface structure and energetic stability depends on arbitrary relative displacements and twist angles of two interacting surfaces. The resultant detailed and comprehensive energetic stability maps provide a global perspective for understanding and designing interfaces. We confirm the power and utility of our method with respect to the catalytically important TiO2 anatase (101)/(001) and TiO2 anatase (101)/rutile (110) interfaces.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献