Ultra-high thermal stability of sputtering reconstructed Cu-based catalysts

Author:

Yu Jiafeng,Sun Xingtao,Tong Xin,Zhang Jixin,Li Jie,Li Shiyan,Liu YuefengORCID,Tsubaki NoritatsuORCID,Abe Takayuki,Sun JianORCID

Abstract

AbstractThe rational design of high-temperature endurable Cu-based catalysts is a long-sought goal since they are suffering from significant sintering. Establishing a barrier on the metal surface by the classical strong metal-support interaction (SMSI) is supposed to be an efficient way for immobilizing nanoparticles. However, Cu particles were regarded as impossible to form classical SMSI before irreversible sintering. Herein, we fabricate the SMSI between sputtering reconstructed Cu and flame-made LaTiO2 support at a mild reduction temperature, exhibiting an ultra-stable performance for more than 500 h at 600 °C. The sintering of Cu nanoparticles is effectively suppressed even at as high as 800 °C. The critical factors to success are reconstructing the electronic structure of Cu atoms in parallel with enhancing the support reducibility, which makes them adjustable by sputtering power or decorated supports. This strategy will extremely broaden the applications of Cu-based catalysts at more severe conditions and shed light on establishing SMSI on other metals.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3