Abstract
AbstractAlthough global and Northern Hemisphere temperature reconstructions are coherent with climate model simulations over the last millennium, reconstructed temperatures tend to diverge from simulations at smaller spatial scales. Yet, it remains unclear to what extent these regional peculiarities reflect region-specific internal climate variability or inadequate proxy coverage and quality. Here, we present a high-quality, millennial-long summer temperature reconstruction for northeastern North America, based on maximum latewood density, the most temperature-sensitive tree-ring proxy. Our reconstruction shows that a large majority (31 out of 44) of the coldest extremes can be attributed to explosive volcanic eruptions, with more persistent cooling following large tropical than extratropical events. These forced climate variations synchronize regional summer temperatures with hemispheric reconstructions and simulations at the multidecadal time scale. Our study highlights that tropical volcanism is the major driver of multidecadal temperature variations across spatial scales.
Funder
Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada
Hydro-Québec
China Scholarship Council
Manitoba Hydro and Ouranos
Technology Department of the Xinjiang Autonomous Region
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献