Atmospheric oxidation drove climate change on Noachian Mars

Author:

Liu Jiacheng,Michalski Joseph R.ORCID,Wang Zhicheng,Gao Wen-Sheng

Abstract

AbstractModern Mars is bipolar, cold, and oxidizing, while early Mars was characterized by icy highlands, episodic warmth and reducing atmosphere. The timing and association of the climate and redox transitions remain inadequately understood. Here we examine the spatiotemporal distribution of the low surface iron abundance in the ancient Martian terrains, revealing that iron abundance decreases with elevation in the older Noachian terrains but with latitude in the younger Noachian terrains. These observations suggest: (a) low-temperature conditions contribute to surface iron depletion, likely facilitated by anoxic leaching through freeze-thaw cycles under a reducing atmosphere, and (b) temperature distribution mode shifted from elevation-dominant to latitude-dominant during the Noachian period. Additionally, we find iron leaching intensity decreases from the Early to Late Noachian epoch, suggesting a gradual atmospheric oxidation coupled with temperature mode transition during the Noachian period. We think atmospheric oxidation led to Mars becoming cold and bipolar in its early history.

Funder

Research Grants Council, University Grants Committee

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3