Abstract
AbstractBandgap gradient is a proven approach for improving the open-circuit voltages (VOCs) in Cu(In,Ga)Se2 and Cu(Zn,Sn)Se2 thin-film solar cells, but has not been realized in Cd(Se,Te) thin-film solar cells, a leading thin-film solar cell technology in the photovoltaic market. Here, we demonstrate the realization of a bandgap gradient in Cd(Se,Te) thin-film solar cells by introducing a Cd(O,S,Se,Te) region with the same crystal structure of the absorber near the front junction. The formation of such a region is enabled by incorporating oxygenated CdS and CdSe layers. We show that the introduction of the bandgap gradient reduces the hole density in the front junction region and introduces a small spike in the band alignment between this and the absorber regions, effectively suppressing the nonradiative recombination therein and leading to improved VOCs in Cd(Se,Te) solar cells using commercial SnO2 buffers. A champion device achieves an efficiency of 20.03% with a VOC of 0.863 V.
Funder
United States Department of Defense | United States Air Force | AFMC | Air Force Research Laboratory
National Science Foundation
DOE | Office of Energy Efficiency & Renewable Energy | Solar Energy Technologies Office
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Reference48 articles.
1. Wu, X. High-efficiency polycrystalline CdTe thin-film solar cells. Sol. Energy 77, 803–814 (2004).
2. NREL. Research Cell Record Efficiency Chart. https://www.nrel.gov/pv/assets/pdfs/pv-efficiency-chart.201812171.pdf (2021).
3. Paudel, N. R., Poplawsky, J. D., Moore, K. L. & Yan, Y. Current enhancement of CdTe-based solar cells. IEEE J. Photovolt. 5, 1492–1496 (2015).
4. Wei, S.-H., Zhang, S. B. & Zunger, A. First-principles calculation of band offsets, optical bowings, and defects in CdS, CdSe, CdTe, and their alloys. J. Appl. Phys. 87, 1304–1311 (2000).
5. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p‐n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献