Abstract
AbstractAltering electrochemical interfaces by using electrolyte effects or so-called “electrolyte engineering” provides a versatile means to modulate the electrochemical response. However, the long-standing challenge is going “beyond cyclic voltammetry” where electrolyte effects are interrogated from the standpoint of the interfacial properties of the electrode/electrolyte interface. Here, we employ ferrocene-terminated self-assembled monolayers as a molecular probe and investigate how the anion-dictated electrochemical responses are translated in terms of the electronic and structural properties of the electrode/monolayer/electrolyte interface. We utilise a photoelectron-based spectroelectrochemical approach that is capable of capturing “snapshots” into (1) anion dependencies of the ferrocene/ferrocenium (Fc/Fc+) redox process including ion-pairing with counter anions (Fc+–anion) caused by differences in Fc+–anion interactions and steric constraints, and (2) interfacial energetics concerning the electrostatic potential across the electrode/monolayer/electrolyte interface. Our work can be extended to provide electrolyte-related structure-property relationships in redox-active polymers and functionalised electrodes for pseudocapacitive energy storage.
Funder
MEXT | RIKEN
MEXT | Japan Society for the Promotion of Science
MEXT | Japan Science and Technology Agency
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献