Abstract
AbstractUnder time-reversal symmetry, a linear charge Hall response is usually deemed to be forbidden by the Onsager relation. In this work, we discover a scenario for realizing a time-reversal even linear charge Hall effect in a non-isolated two-dimensional crystal allowed by time reversal symmetry. The restriction by Onsager relation is lifted by interfacial coupling with an adjacent layer, where the overall chiral symmetry requirement is fulfilled by a twisted stacking. We reveal the underlying band geometric quantity as the momentum-space vorticity of layer current. The effect is demonstrated in twisted bilayer graphene and twisted homobilayer transition metal dichalcogenides with a wide range of twist angles, which exhibit giant Hall ratios under experimentally practical conditions, with gate voltage controlled on-off switch. This work reveals intriguing Hall physics in chiral structures, and opens up a research direction of layertronics that exploits the quantum nature of layer degree of freedom to uncover exciting effects.
Funder
Research Grants Council, University Grants Committee
Croucher Foundation (Croucher Senior Research Fellowship). Tencent Foundation.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献