Abstract
AbstractMitochondria are critical to cellular and organismal health. To prevent damage, mitochondria have evolved protein quality control machines to survey and maintain the mitochondrial proteome. SKD3, also known as CLPB, is a ring-forming, ATP-fueled protein disaggregase essential for preserving mitochondrial integrity and structure. SKD3 deficiency causes 3-methylglutaconic aciduria type VII (MGCA7) and early death in infants, while mutations in the ATPase domain impair protein disaggregation with the observed loss-of-function correlating with disease severity. How mutations in the non-catalytic N-domain cause disease is unknown. Here, we show that the disease-associated N-domain mutation, Y272C, forms an intramolecular disulfide bond with Cys267 and severely impairs SKD3Y272C function under oxidizing conditions and in living cells. While Cys267 and Tyr272 are found in all SKD3 isoforms, isoform-1 features an additional α-helix that may compete with substrate-binding as suggested by crystal structure analyses and in silico modeling, underscoring the importance of the N-domain to SKD3 function.
Funder
U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences
U.S. Department of Health & Human Services | National Institutes of Health
U.S. Department of Energy
University of Texas Health Science Center at Houston
University of Texas System
Cancer Prevention and Research Institute of Texas
Welch Foundation
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献