Abstract
AbstractC−C bond forming reaction by alkylation of aryl rings is a main pillar of chemistry in the production of broad portfolios of chemical products. The dominant mechanism proceeds via electrophilic substitution of secondary and tertiary carbocations over acid catalysts, forming multiple aryl alkylation products non-selectively through all secondary and tertiary carbons in the alkyl chains but producing little α-C alkylation products because primary carbocations are poorly stable. Herein, we report that anatase TiO2 (TiO2-A) catalyzes nucleophilic α-C alkylation of phenols with alcohols in high selectivity to simply linear alkylphenols. Experimental and computational studies reveal the formation of Ti=C− bond with the α-carbon of the alkyl group at oxygen vacancies of the TiO2-A surface. The subsequent α-C alkylation by selective substitution of phenol ortho-C−H bond is verified by deuterium exchanged substrate and DFT calculations.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献