Abstract
AbstractConformational isomerization can be guided by weak interactions such as chalcogen bonding (ChB) interactions. Here we report a catalytic strategy for asymmetric access to chiral sulfoxides by employing conformational isomerization and chalcogen bonding interactions. The reaction involves a sulfoxide bearing two aldehyde moieties as the substrate that, according to structural analysis and DFT calculations, exists as a racemic mixture due to the presence of an intramolecular chalcogen bond. This chalcogen bond formed between aldehyde (oxygen atom) and sulfoxide (sulfur atom), induces a conformational locking effect, thus making the symmetric sulfoxide as a racemate. In the presence of N–heterocyclic carbene (NHC) as catalyst, the aldehyde moiety activated by the chalcogen bond selectively reacts with an alcohol to afford the corresponding chiral sulfoxide products with excellent optical purities. This reaction involves a dynamic kinetic resolution (DKR) process enabled by conformational locking and facile isomerization by chalcogen bonding interactions.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Guizhou Province
National Research Foundation Singapore
Ministry of Education - Singapore
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献