Abstract
AbstractThe spacetime light cone is central to the definition of causality in the theory of relativity. Recently, links between relativistic and condensed matter physics have been uncovered, where relativistic particles can emerge as quasiparticles in the energy-momentum space of matter. Here, we unveil an energy-momentum analogue of the spacetime light cone by mapping time to energy, space to momentum, and the light cone to the Weyl cone. We show that two Weyl quasiparticles can only interact to open a global energy gap if they lie in each other’s energy-momentum dispersion cones–analogous to two events that can only have a causal connection if they lie in each other’s light cones. Moreover, we demonstrate that the causality of surface chiral modes in quantum matter is entangled with the causality of bulk Weyl fermions. Furthermore, we identify a unique quantum horizon region and an associated ‘thick horizon’ in the emergent causal structure.
Funder
National Research Foundation Singapore
Nanyang Technological University
United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research
Ministry of Science and Technology, Taiwan
Gordon and Betty Moore Foundation
DOE | LDRD | Ames Laboratory
National Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献