Abstract
AbstractWe propose a new concept exploiting thermally activated delayed fluorescence (TADF) molecules as photosensitizers, storage units and signal transducers to harness solar thermal energy. Molecular composites based on the TADF core phenoxazine–triphenyltriazine (PXZ-TRZ) anchored with norbornadiene (NBD) were synthesized, yielding compounds PZDN and PZTN with two and four NBD units, respectively. Upon visible-light excitation, energy transfer to the triplet state of NBD occurred, followed by NBD → quadricyclane (QC) conversion, which can be monitored by changes in steady-state or time-resolved spectra. The small S1-T1 energy gap was found to be advantageous in optimizing the solar excitation wavelength. Upon tuning the molecule’s triplet state energy lower than that of NBD (61 kcal/mol), as achieved by another composite PZQN, the efficiency of the NBD → QC conversion decreased drastically. Upon catalysis, the reverse QC → NBD reaction occurred at room temperature, converting the stored chemical energy back to heat with excellent reversibility.
Funder
Ministry of Science and Technology, Taiwan
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献