Abstract
AbstractResistance development to one chemotherapeutic reagent leads frequently to acquired tolerance to other compounds, limiting the therapeutic options for cancer treatment. Herein, we find that overexpression of Rac1 is associated with multi-drug resistance to the neoadjuvant chemotherapy (NAC). Mechanistically, Rac1 activates aldolase A and ERK signaling which up-regulates glycolysis and especially the non-oxidative pentose phosphate pathway (PPP). This leads to increased nucleotides metabolism which protects breast cancer cells from chemotherapeutic-induced DNA damage. To translate this finding, we develop endosomal pH-responsive nanoparticles (NPs) which deliver Rac1-targeting siRNA together with cisplatin and effectively reverses NAC-chemoresistance in PDXs from NAC-resistant breast cancer patients. Altogether, our findings demonstrate that targeting Rac1 is a potential strategy to overcome acquired chemoresistance in breast cancer.
Funder
Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Reference64 articles.
1. Luqmani, Y. A. Mechanisms of drug resistance in cancer chemotherapy. Med Princ. Pr. 14, 35–48 (2005).
2. Mansoori, B., Mohammadi, A., Davudian, S., Shirjang, S. & Baradaran, B. The different mechanisms of cancer drug resistance: a brief review. Adv. Pharm. Bull. 7, 339–348 (2017).
3. McAndrew, N. & DeMichele, A. Neoadjuvant chemotherapy considerations in triple-negative breast cancer. J. Target Ther. Cancer 7, 52–69 (2018).
4. Woods, D. & Turchi, J. J. Chemotherapy induced DNA damage response: convergence of drugs and pathways. Cancer Biol. Ther. 14, 379–389 (2013).
5. Cheung-Ong, K., Giaever, G. & Nislow, C. DNA-damaging agents in cancer chemotherapy: serendipity and chemical biology. Chem. Biol. 20, 648–659 (2013).
Cited by
113 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献