Abstract
AbstractBi3TiNbO9, a layered ferroelectric photocatalyst, exhibits great potential for overall water splitting through efficient intralayer separation of photogenerated carriers motivated by a depolarization field along the in-plane a-axis. However, the poor interlayer transport of carriers along the out-of-plane c-axis, caused by the significant potential barrier between layers, leads to a high probability of carrier recombination and consequently results in low photocatalytic activity. Here, we have developed an efficient photocatalyst consisting of Bi3TiNbO9 nanosheets with a gradient tungsten (W) doping along the c-axis. This results in the generation of an additional electric field along the c-axis and simultaneously enhances the magnitude of depolarization field within the layers along the a-axis due to strengthened structural distortion. The combination of the built-in field along the c-axis and polarization along the a-axis can effectively facilitate the anisotropic migration of photogenerated electrons and holes to the basal {001} surface and lateral {110} surface of the nanosheets, respectively, enabling desirable spatial separation of carriers. Hence, the W-doped Bi3TiNbO9 ferroelectric photocatalyst with Rh/Cr2O3 cocatalyst achieves an efficient and durable overall water splitting feature, thereby providing an effective pathway for designing excellent layered ferroelectric photocatalysts.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献