Abstract
AbstractSilicon is vital for its high abundance, vast production, and perfect compatibility with the well-established CMOS processing industry. Recently, artificially stacked layered 2D structures have gained tremendous attention via fine-tuning properties for electronic devices. This article presents neuromorphic devices based on silicon nanosheets that are chemically exfoliated and surface-modified, enabling self-assembly into hierarchical stacking structures. The device functionality can be switched between a unipolar memristor and a feasibly reset-able synaptic device. The memory function of the device is based on the charge storage in the partially oxidized SiNS stacks followed by the discharge activated by the electric field at the Au-Si Schottky interface, as verified in both experimental and theoretical means. This work further inspired elegant neuromorphic computation models for digit recognition and noise filtration. Ultimately, it brings silicon - the most established semiconductor - back to the forefront for next-generation computations.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献