Nocturnal plant respiration is under strong non-temperature control

Author:

Bruhn DanORCID,Newman FreyaORCID,Hancock MathildaORCID,Povlsen PeterORCID,Slot MartijnORCID,Sitch StephenORCID,Drake John,Weedon Graham P.ORCID,Clark Douglas B.ORCID,Pagter MajkenORCID,Ellis Richard J.ORCID,Tjoelker Mark G.ORCID,Andersen Kelly M.ORCID,Correa Zorayda Restrepo,McGuire Patrick C.ORCID,Mercado Lina M.ORCID

Abstract

AbstractMost biological rates depend on the rate of respiration. Temperature variation is typically considered the main driver of daily plant respiration rates, assuming a constant daily respiration rate at a set temperature. Here, we show empirical data from 31 species from temperate and tropical biomes to demonstrate that the rate of plant respiration at a constant temperature decreases monotonically with time through the night, on average by 25% after 8 h of darkness. Temperature controls less than half of the total nocturnal variation in respiration. A new universal formulation is developed to model and understand nocturnal plant respiration, combining the nocturnal decrease in the rate of plant respiration at constant temperature with the decrease in plant respiration according to the temperature sensitivity. Application of the new formulation shows a global reduction of 4.5 −6 % in plant respiration and an increase of 7-10% in net primary production for the present-day.

Funder

RCUK | Natural Environment Research Council

FR acknowledges funding from an internship from the College of Life and Environmental Sciences, University of Exeter, UK.

MH was supported by a research experience placement funded by the NERC GW4+Doctoral Training Partnership

GPW was supported by the Met Office Hadley Centre Climate Programme funded by BEIS

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3