Abstract
AbstractNeuroimaging evidence suggests that the default mode network (DMN) exhibits antagonistic activity with dorsal attention (DAN) and salience (SN) networks. Here we use human intracranial electroencephalography to investigate the behavioral relevance of fine-grained dynamics within and between these networks. The three networks show dissociable profiles of task-evoked electrophysiological activity, best captured in the high-frequency broadband (HFB; 70–170 Hz) range. On the order of hundreds of milliseconds, HFB responses peak fastest in the DAN, at intermediate speed in the SN, and slowest in the DMN. Lapses of attention (behavioral errors) are marked by distinguishable patterns of both pre- and post-stimulus HFB activity within each network. Moreover, the magnitude of temporally lagged, negative HFB coupling between the DAN and DMN (but not SN and DMN) is associated with greater sustained attention performance and is reduced during wakeful rest. These findings underscore the behavioral relevance of temporally delayed coordination between antagonistic brain networks.
Funder
U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke
U.S. Department of Health & Human Services | NIH | National Institute of Mental Health
National Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
80 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献