Abstract
AbstractElectrochemical synthesis of H2O2 through a selective two-electron (2e−) oxygen reduction reaction (ORR) is an attractive alternative to the industrial anthraquinone oxidation method, as it allows decentralized H2O2 production. Herein, we report that the synergistic interaction between partially oxidized palladium (Pdδ+) and oxygen-functionalized carbon can promote 2e− ORR in acidic electrolytes. An electrocatalyst synthesized by solution deposition of amorphous Pdδ+ clusters (Pd3δ+ and Pd4δ+) onto mildly oxidized carbon nanotubes (Pdδ+-OCNT) shows nearly 100% selectivity toward H2O2 and a positive shift of ORR onset potential by ~320 mV compared with the OCNT substrate. A high mass activity (1.946 A mg−1 at 0.45 V) of Pdδ+-OCNT is achieved. Extended X-ray absorption fine structure characterization and density functional theory calculations suggest that the interaction between Pd clusters and the nearby oxygen-containing functional groups is key for the high selectivity and activity for 2e− ORR.
Funder
ACS | American Chemical Society Petroleum Research Fund
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Reference46 articles.
1. Myers, R. L. The 100 Most Important Chemical Compounds: A Reference Guide (ABC-CLIO, 2007).
2. Brillas, E., Sirés, I. & Oturan, M. A. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem. Rev. 109, 6570–6631 (2009).
3. Teles, J., Hermans, I., Franz, G. & Sheldon, R. Ullmann’s Encyclopedia of Industrial Chemistry (Wiley-VCH, Weinheim, 2015).
4. Fukuzumi, S., Yamada, Y. & Karlin, K. D. Hydrogen peroxide as a sustainable energy carrier: electrocatalytic production of hydrogen peroxide and the fuel cell. Electrochim. Acta 82, 493–511 (2012).
5. Campos‐Martin, J. M., Blanco‐Brieva, G. & Fierro, J. L. Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew. Chem. Int. Ed. 45, 6962–6984 (2006).
Cited by
274 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献