Catalytic 1,1-diazidation of alkenes

Author:

Qiu Wangzhen,Liao LihaoORCID,Xu Xinghua,Huang HongtaiORCID,Xu Yang,Zhao XiaodanORCID

Abstract

AbstractCompared to well-developed catalytic 1,2-diazidation of alkenes to produce vicinal diazides, the corresponding catalytic 1,1-diazidation of alkenes to yield geminal diazides has not been realized. Here we report an efficient approach for catalytic 1,1-diazidation of alkenes by redox-active selenium catalysis. Under mild conditions, electron-rich aryl alkenes with Z or E or Z/E mixed configuration can undergo migratory 1,1-diazidation to give a series of functionalized monoalkyl or dialkyl geminal diazides that are difficult to access by other methods. The method is also effective for the construction of polydiazides. The formed diazides are relatively safe by TGA-DSC analysis and impact sensitivity tests, and can be easily converted into various valuable molecules. In addition, interesting reactivity that geminal diazides give valuable molecules via the geminal diazidomethyl moiety as a formal leaving group in the presence of Lewis acid is disclosed. Mechanistic studies revealed that a selenenylation-deselenenylation followed by 1,2-aryl migration process is involved in the reactions, which provides a basis for the design of new reactions.

Funder

National Natural Science Foundation of China

Guangdong Basic Research Center of Excellence for Functional Molecular Engineering

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3