Abstract
AbstractTuning the composition of perovskites to approach the ideal bandgap raises the single-junction Shockley-Queisser efficiency limit of solar cells. The rapid development of narrow-bandgap formamidinium lead triiodide-based perovskites has brought perovskite single-junction solar cell efficiencies up to 26.1%. However, such compositional engineering route has reached the limit of the Goldschmidt tolerance factor. Here, we experimentally demonstrate a resonant perovskite solar cell that produces giant light absorption at the perovskite band edge with tiny absorption coefficients. We design multiple guide-mode resonances by momentum matching of waveguided modes and free-space light via Brillouin-zone folding, thus achieving an 18-nm band edge extension and 1.5 mA/cm2 improvement of the current. The external quantum efficiency spectrum reaches a plateau of above 93% across the spectral range of ~500 to 800 nm. This resonant nanophotonics strategy translates to a maximum EQE-integrated current of 26.0 mA/cm2 which is comparable to that of the champion single-crystal perovskite solar cell with a thickness of ~20 μm. Our findings break the ray-optics limit and open a new door to improve the efficiency of single-junction perovskite solar cells further when compositional engineering or other carrier managements are close to their limits.
Funder
National University of Singapore
Deutsche Morbus Crohn/Colitis Ulcerosa Vereinigung
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Reference42 articles.
1. Polman, A., Knight, M., Garnett, E. C., Ehrler, B. & Sinke, W. C. Photovoltaic materials: present efficiencies and future challenges. Science 352, aad4424 (2016).
2. Nayak, P. K., Mahesh, S., Snaith, H. J. & Cahen, D. Photovoltaic solar cell technologies: analysing the state of the art. Nat. Rev. Mater. 4, 269–285 (2019).
3. Green, M. A. & Bremner, S. P. Energy conversion approaches and materials for high-efficiency photovoltaics. Nat. Mater. 16, 23–34 (2017).
4. Best Research-Cell Efficiency. (NREL, 2022); https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-rev220630.pdf.
5. Yoo, J. J. et al. Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021).
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献