Abstract
AbstractElectrocaloric effect driven by electric fields displays great potential in realizing highly efficient solid-state refrigeration. Nevertheless, most known electrocaloric materials exhibit relatively poor cooling performance near room temperature, which hinders their further applications. The emerging family of hybrid perovskite ferroelectrics, which exhibits superior structural diversity, large heat exchange and broad property tenability, offers an ideal platform. Herein, we report an exceptionally large electrocaloric effect near room temperature in a designed hybrid perovskite ferroelectric [(CH3)2CHCH2NH3]2PbCl4, which exhibits a sharp first-order phase transition at 302 K, superior spontaneous polarization (>4.8 μC/cm2) and relatively small coercive field (<15 kV/cm). Strikingly, a large isothermal entropy change ΔS of 25.64 J/kg/K and adiabatic temperature change ΔT of 11.06 K under a small electric field ΔE of 29.7 kV/cm at room temperature are achieved, with giant electrocaloric strengths of isothermal ΔS/ΔE of 0.86 J·cm/kg/K/kV and adiabatic ΔT/ΔE of 370 mK·cm/kV, which is larger than those of traditional ferroelectrics. This work presents a general approach to the design of hybrid perovskite ferroelectrics, as well as provides a family of candidate materials with potentially prominent electrocaloric performance for room temperature solid-state refrigeration.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献