Abstract
Abstract
Broken symmetries in solids involving higher order multipolar degrees of freedom are historically referred to as “hidden orders” due to the formidable task of detecting them with conventional probes. In this work, we theoretically propose that magnetostriction provides a powerful and novel tool to directly detect higher-order multipolar symmetry breaking—such as the elusive octupolar order—by examining scaling behaviour of length change with respect to an applied magnetic field h. Employing a symmetry-based Landau theory, we focus on the family of Pr-based cage compounds with strongly correlated f-electrons, Pr(Ti,V,Ir)2(Al,Zn)20, whose low energy degrees of freedom are purely higher-order multipoles: quadrupoles $${\cal{O}}_{20,22}$$
O
20
,
22
and octupole $${\cal{T}}_{xyz}$$
T
x
y
z
. We demonstrate that a magnetic field along the [111] direction induces a distinct linear-in-h length change below the octupolar ordering temperature. The resulting “magnetostriction coefficient” is directly proportional to the octupolar order parameter, thus providing clear access to such subtle order parameters.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献