Origin of the quasi-quantized Hall effect in ZrTe5
-
Published:2021-05-27
Issue:1
Volume:12
Page:
-
ISSN:2041-1723
-
Container-title:Nature Communications
-
language:en
-
Short-container-title:Nat Commun
Author:
Galeski S.ORCID, Ehmcke T.ORCID, Wawrzyńczak R., Lozano P. M., Cho K., Sharma A., Das S., Küster F., Sessi P.ORCID, Brando M., Küchler R., Markou A.ORCID, König M., Swekis P., Felser C., Sassa Y., Li Q.ORCID, Gu G., Zimmermann M. V.ORCID, Ivashko O.ORCID, Gorbunov D. I., Zherlitsyn S., Förster T., Parkin S. S. P.ORCID, Wosnitza J., Meng T.ORCID, Gooth J.ORCID
Abstract
AbstractThe quantum Hall effect (QHE) is traditionally considered to be a purely two-dimensional (2D) phenomenon. Recently, however, a three-dimensional (3D) version of the QHE was reported in the Dirac semimetal ZrTe5. It was proposed to arise from a magnetic-field-driven Fermi surface instability, transforming the original 3D electron system into a stack of 2D sheets. Here, we report thermodynamic, spectroscopic, thermoelectric and charge transport measurements on such ZrTe5 samples. The measured properties: magnetization, ultrasound propagation, scanning tunneling spectroscopy, and Raman spectroscopy, show no signatures of a Fermi surface instability, consistent with in-field single crystal X-ray diffraction. Instead, a direct comparison of the experimental data with linear response calculations based on an effective 3D Dirac Hamiltonian suggests that the quasi-quantization of the observed Hall response emerges from the interplay of the intrinsic properties of the ZrTe5 electronic structure and its Dirac-type semi-metallic character.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Reference52 articles.
1. Landau, L. D. & Lifshitz, E. M. Quantum Mechanics: Non-relativistic Theory, Vol. 3 (Elsevier, 2013). 2. Klitzing, K. V., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys. Rev. Lett. 45, 494–497 (1980). 3. Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559 (1982). 4. Yoshioka, D. The Quantum Hall Effect, Vol. 133 (Springer Science & Business Media, 2013). 5. Halperin, B. I. Theory of the quantized Hall conductance. Helv. Phys. Acta 56, 75–102 (1983).
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|