Spontaneously established reverse electric field to enhance the performance of triboelectric nanogenerators via improving Coulombic efficiency

Author:

Gao Yikui,He Lixia,Liu DiORCID,Zhang JiayueORCID,Zhou LinglinORCID,Wang Zhong LinORCID,Wang JieORCID

Abstract

AbstractMechanical energy harvesting using triboelectric nanogenerators is a highly desirable and sustainable method for the reliable power supply of widely distributed electronics in the new era; however, its practical viability is seriously challenged by the limited performance because of the inevitable side-discharge and low Coulombic-efficiency issues arising from electrostatic breakdown. Here, we report an important progress on these fundamental problems that the spontaneously established reverse electric field between the electrode and triboelectric layer can restrict the side-discharge problem in triboelectric nanogenerators. The demonstration employed by direct-current triboelectric nanogenerators leads to a high Coulombic efficiency (increased from 28.2% to 94.8%) and substantial enhancement of output power. More importantly, we demonstrate this strategy is universal for other mode triboelectric nanogenerators, and a record-high average power density of 6.15 W m−2 Hz−1 is realized. Furthermore, Coulombic efficiency is verified as a new figure-of-merit to quantitatively evaluate the practical performance of triboelectric nanogenerators.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3