Abstract
AbstractCurrent thermochemical methods to generate H2 include gasification and steam reforming of coal and natural gas, in which anthropogenic CO2 emission is inevitable. If biomass is used as a source of H2, the process can be considered carbon-neutral. Seaweeds are among the less studied types of biomass with great potential because they do not require freshwater. Unfortunately, reaction pathways to thermochemically convert salty and wet biomass into H2 are limited. In this study, a catalytic alkaline thermal treatment of brown seaweed is investigated to produce high purity H2 with substantially suppressed CO2 formation making the overall biomass conversion not only carbon-neutral but also potentially carbon-negative. High-purity 69.69 mmol-H2/(dry-ash-free)g-brown seaweed is produced with a conversion as high as 71%. The hydroxide is involved in both H2 production and in situ CO2 capture, while the Ni/ZrO2 catalyst enhanced the secondary H2 formation via steam methane reforming and water-gas shift reactions.
Funder
NSF | ENG/OAD | Division of Chemical, Bioengineering, Environmental, and Transport Systems
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Reference60 articles.
1. IEA. International Energy Agency in World Energy Outlook (2018).
2. Chu, S., Cui, Y. & Liu, N. The path towards sustainable energy. Nat. Mater. 16, 16 (2017).
3. BP., BP Statistical Review of World Energy (2017).
4. Chu, S. & Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294 (2012).
5. Sikarwar, V. S. et al. An overview of advances in biomass gasification. Energy Environ. Sci. 9, 2939–2977 (2016).
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献