Abstract
AbstractElectrochemical chlorine evolution reaction is of central importance in the chlor-alkali industry, but the chlorine evolution anode is largely limited by water oxidation side reaction and corrosion-induced performance decay in strong acids. Here we present an amorphous CoOxCly catalyst that has been deposited in situ in an acidic saline electrolyte containing Co2+ and Cl- ions to adapt to the given electrochemical condition and exhibits ~100% chlorine evolution selectivity with an overpotential of ~0.1 V at 10 mA cm−2 and high stability over 500 h. In situ spectroscopic studies and theoretical calculations reveal that the electrochemical introduction of Cl- prevents the Co sites from charging to a higher oxidation state thus suppressing the O-O bond formation for oxygen evolution. Consequently, the chlorine evolution selectivity has been enhanced on the Cl-constrained Co-O* sites via the Volmer-Heyrovsky pathway. This study provides fundamental insights into how the reactant Cl- itself can work as a promoter toward enhancing chlorine evolution in acidic brine.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Reference59 articles.
1. Karlsson, R. K. & Cornell, A. Selectivity between oxygen and chlorine evolution in the chlor-alkali and chlorate processes. Chem. Rev. 116, 2982–3028 (2016).
2. Greenwood, N. N. & Earnshaw, A. Chemistry of the Elements. Butterworth-Heinemann, Oxford, Elsevier (1977).
3. Chadwick, S. S. Ullmann’s encyclopedia of industrial chemistry. Reference Services Review (1988).
4. Hayfield, P. Development of the noble metal/oxide coated titanium electrode. Platin. Met. Rev. 42, 116–122 (1998).
5. Crook, J. & Mousavi, A. The chlor-alkali process: A review of history and pollution. Environ. Forensics 17, 211–217 (2016).
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献