Abstract
AbstractThermoelectric materials can realize direct conversion between heat and electricity, showing excellent potential for waste heat recovery. Cu2Se is a typical superionic conductor thermoelectric material having extraordinary ZT values, but its superionic feature causes poor service stability and low mobility. Here, we reported a fast preparation method of self-propagating high-temperature synthesis to realize in situ compositing of BiCuSeO and Cu2Se to optimize the service stability. Additionally, using the interface design by introducing graphene in these composites, the carrier mobility could be obviously enhanced, and the strong phonon scatterings could lead to lower lattice thermal conductivity. Ultimately, the Cu2Se-BiCuSeO-graphene composites presented excellent thermoelectric properties with a ZTmax value of ~2.82 at 1000 K and a ZTave value of ~1.73 from 473 K to 1000 K. This work provides a facile and effective strategy to largely improve the performance of Cu2Se-based thermoelectric materials, which could be further adopted in other thermoelectric systems.
Funder
National Natural Science Foundation of China
Shenzhen Science and Technology Innovation Commission
Australian Nuclear Science and Technology Organisation
Fundamental Research Funds for the Universities of Henan Province
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献