Extracting particle size distribution from laser speckle with a physics-enhanced autocorrelation-based estimator (PEACE)

Author:

Zhang QihangORCID,Gamekkanda Janaka C.ORCID,Pandit AjinkyaORCID,Tang Wenlong,Papageorgiou CharlesORCID,Mitchell Chris,Yang Yihui,Schwaerzler MichaelORCID,Oyetunde Tolutola,Braatz Richard D.ORCID,Myerson Allan S.ORCID,Barbastathis GeorgeORCID

Abstract

AbstractExtracting quantitative information about highly scattering surfaces from an imaging system is challenging because the phase of the scattered light undergoes multiple folds upon propagation, resulting in complex speckle patterns. One specific application is the drying of wet powders in the pharmaceutical industry, where quantifying the particle size distribution (PSD) is of particular interest. A non-invasive and real-time monitoring probe in the drying process is required, but there is no suitable candidate for this purpose. In this report, we develop a theoretical relationship from the PSD to the speckle image and describe a physics-enhanced autocorrelation-based estimator (PEACE) machine learning algorithm for speckle analysis to measure the PSD of a powder surface. This method solves both the forward and inverse problems together and enjoys increased interpretability, since the machine learning approximator is regularized by the physical law.

Funder

Millennium Pharmaceuticals, Inc. (a subsidiary of Takeda Pharmaceuticals).

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Reference45 articles.

1. Goodman, J. W. Statistical properties of laser speckle patterns. 9–75 https://doi.org/10.1007/bfb0111436 (1975).

2. Goodman, J. W. Statistical optics (John Wiley & Sons, 2015).

3. Dainty, J. C. Laser Speckle and Related Phenomena Vol. 9 (Springer science & business Media, 2013).

4. Buchanan, J. D. R. et al. ‘Fingerprinting’ documents and packaging. Nature 436, 475 (2005).

5. Yan, J. et al. Recognition of suspension liquid based on speckle patterns using deep learning. IEEE Photonics J. 13, 1–7 (2021).

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3