Unusual competition of superconductivity and charge-density-wave state in a compressed topological kagome metal

Author:

Yu F. H.,Ma D. H.,Zhuo W. Z.,Liu S. Q.,Wen X. K.,Lei B.,Ying J. J.,Chen X. H.ORCID

Abstract

AbstractUnderstanding the competition between superconductivity and other ordered states (such as antiferromagnetic or charge-density-wave (CDW) state) is a central issue in condensed matter physics. The recently discovered layered kagome metal AV3Sb5 (A = K, Rb, and Cs) provides us a new playground to study the interplay of superconductivity and CDW state by involving nontrivial topology of band structures. Here, we conduct high-pressure electrical transport and magnetic susceptibility measurements to study CsV3Sb5 with the highest Tc of 2.7 K in AV3Sb5 family. While the CDW transition is monotonically suppressed by pressure, superconductivity is enhanced with increasing pressure up to P1 ≈ 0.7 GPa, then an unexpected suppression on superconductivity happens until pressure around 1.1 GPa, after that, Tc is enhanced with increasing pressure again. The CDW is completely suppressed at a critical pressure P2 ≈ 2 GPa together with a maximum Tc of about 8 K. In contrast to a common dome-like behavior, the pressure-dependent Tc shows an unexpected double-peak behavior. The unusual suppression of Tc at P1 is concomitant with the rapidly damping of quantum oscillations, sudden enhancement of the residual resistivity and rapid decrease of magnetoresistance. Our discoveries indicate an unusual competition between superconductivity and CDW state in pressurized kagome lattice.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3