Abstract
AbstractAn immediate report of the source focal mechanism with full automation after a destructive earthquake is crucial for timely characterizing the faulting geometry, evaluating the stress perturbation, and assessing the aftershock patterns. Advanced technologies such as Artificial Intelligence (AI) has been introduced to solve various problems in real-time seismology, but the real-time source focal mechanism is still a challenge. Here we propose a novel deep learning method namely Focal Mechanism Network (FMNet) to address this problem. The FMNet trained with 787,320 synthetic samples successfully estimates the focal mechanisms of four 2019 Ridgecrest earthquakes with magnitude larger than Mw 5.4. The network learns the global waveform characteristics from theoretical data, thereby allowing the extensive applications of the proposed method to regions of potential seismic hazards with or without historical earthquake data. After receiving data, the network takes less than two hundred milliseconds for predicting the source focal mechanism reliably on a single CPU.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
79 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献