An artificial synapse based on molecular junctions

Author:

Zhang YuchunORCID,Liu Lin,Tu Bin,Cui BinORCID,Guo Jiahui,Zhao XingORCID,Wang Jingyu,Yan YongORCID

Abstract

AbstractShrinking the size of the electronic synapse to molecular length-scale, for example, an artificial synapse directly fabricated by using individual or monolayer molecules, is important for maximizing the integration density, reducing the energy consumption, and enabling functionalities not easily achieved by other synaptic materials. Here, we show that the conductance of the self-assembled peptide molecule monolayer could be dynamically modulated by placing electrical biases, enabling us to implement basic synaptic functions. Both short-term plasticity (e.g., paired-pulse facilitation) and long-term plasticity (e.g., spike-timing-dependent plasticity) are demonstrated in a single molecular synapse. The dynamic current response is due to a combination of both chemical gating and coordination effects between Ag+ and hosting groups within peptides which adjusts the electron hopping rate through the molecular junction. In the end, based on the nonlinearity and short-term synaptic characteristics, the molecular synapses are utilized as reservoirs for waveform recognition with 100% accuracy at a small mask length.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3