Abstract
AbstractQuantum spin liquid is a nontrivial magnetic state of longstanding interest, in which spins are strongly correlated and entangled but do not order; further intriguing is its doped version, which possibly hosts strange metal and unconventional superconductivity. A promising candidate of the doped spin liquid is a triangular-lattice organic conductor, κ-(BEDT-TTF)4Hg2.89Br8, recently found to hold metallicity, spin-liquid-like magnetism, and BEC-like superconductivity. The nature of the metallic state with the spin-liquid behaviour is awaiting to be further clarified. Here, we report the thermoelectric signature that mobile holes in the spin liquid background are in a quantum critical state and it pertains to the BEC-like superconductivity. The Seebeck coefficient divided by temperature, S/T, is enhanced on cooling with logarithmic divergence indicative of quantum criticality. Furthermore, the logarithmic enhancement is correlated with the superconducting transition temperature under pressure variation, and the temperature and magnetic field profile of S/T upon the superconducting transition change with pressure in a consistent way with the previously suggested BEC-BCS crossover. The present results reveal that the quantum criticality in a doped spin liquid emerges in a phase, not at a point, and is involved in the unconventional BEC-like nature.
Funder
MEXT | Japan Society for the Promotion of Science
JST SPRING under Grant Number JPMJSP2108
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献