Abstract
AbstractDzyaloshinskii–Moriya interaction (DMI) is vital to form various chiral spin textures, novel behaviors of magnons and permits their potential applications in energy-efficient spintronic devices. Here, we realize a sizable bulk DMI in a transition metal dichalcogenide (TMD) 2H-TaS2 by intercalating Fe atoms, which form the chiral supercells with broken spatial inversion symmetry and also act as the source of magnetic orderings. Using a newly developed protonic gate technology, gate-controlled protons intercalation could further change the carrier density and intensely tune DMI via the Ruderman–Kittel–Kasuya–Yosida mechanism. The resultant giant topological Hall resistivity $${\rho }_{{xy}}^{T}$$
ρ
x
y
T
of $$1.41{\mathrm{\mu}} \Omega \cdot {{\mathrm{cm}}}$$
1.41
μ
Ω
⋅
cm
at $${V}_{g}=-5.2{\mathrm{V}}$$
V
g
=
−
5.2
V
(about $$424 \%$$
424
%
larger than the zero-bias value) is larger than most known chiral magnets. Theoretical analysis indicates that such a large topological Hall effect originates from the two-dimensional Bloch-type chiral spin textures stabilized by DMI, while the large anomalous Hall effect comes from the gapped Dirac nodal lines by spin–orbit interaction. Dual-intercalation in 2H-TaS2 provides a model system to reveal the nature of DMI in the large family of TMDs and a promising way of gate tuning of DMI, which further enables an electrical control of the chiral spin textures and related electromagnetic phenomena.
Funder
Australian Research Council Centre of Excellence in Future Low-Energy Electronics Technologies
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献