DECIMER.ai: an open platform for automated optical chemical structure identification, segmentation and recognition in scientific publications

Author:

Rajan KohulanORCID,Brinkhaus Henning OttoORCID,Agea M. IsabelORCID,Zielesny AchimORCID,Steinbeck ChristophORCID

Abstract

AbstractThe number of publications describing chemical structures has increased steadily over the last decades. However, the majority of published chemical information is currently not available in machine-readable form in public databases. It remains a challenge to automate the process of information extraction in a way that requires less manual intervention - especially the mining of chemical structure depictions. As an open-source platform that leverages recent advancements in deep learning, computer vision, and natural language processing, DECIMER.ai (Deep lEarning for Chemical IMagE Recognition) strives to automatically segment, classify, and translate chemical structure depictions from the printed literature. The segmentation and classification tools are the only openly available packages of their kind, and the optical chemical structure recognition (OCSR) core application yields outstanding performance on all benchmark datasets. The source code, the trained models and the datasets developed in this work have been published under permissive licences. An instance of the DECIMER web application is available at https://decimer.ai.

Funder

Carl-Zeiss-Stiftung

Deutsche Forschungsgemeinschaft

Ministerstvo Školství, Mládeže a Tělovýchovy

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Reference89 articles.

1. Brinkhaus, H. O., Rajan, K., Schaub, J., Zielesny, A. & Steinbeck, C. Open data and algorithms for open science in AI-driven molecular informatics. Curr. Opin. Struct. Biol. 79, 102542 (2023).

2. Herres-Pawlis, S., Liermann, J. C. & Koepler, O. Research data in chemistry–results of the first NFDI4Chem community survey. Z. Anorg. Allg. Chem. 646, 1748–1757 (2020).

3. Steinbeck, C. et al. NFDI4Chem-towards a national research data infrastructure for chemistry in Germany. Riogrande Odontol. 6, e55852 (2020).

4. NFDI4Chem. nmrXiv-Open, FAIR and Consensus-Driven NMR spectroscopy data repository and analysis platform. nmrXiv-Open, FAIR and Consensus-Driven NMR Spectroscopy Data Repository and Analysis Platform. https://nmrxiv.org/ (2022).

5. Kearnes, S. M. et al. The open reaction database. J. Am. Chem. Soc. 143, 18820–18826 (2021).

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3