Abstract
AbstractNon-reciprocal electronic transport in a spatially homogeneous system arises from the simultaneous breaking of inversion and time-reversal symmetries. Superconducting and Josephson diodes, a key ingredient for future non-dissipative quantum devices, have recently been realized. Only a few examples of a vertical superconducting diode effect have been reported and its mechanism, especially whether intrinsic or extrinsic, remains elusive. Here we demonstrate a substantial supercurrent non-reciprocity in a van der Waals vertical Josephson junction formed with a Td-WTe2 barrier and NbSe2 electrodes that clearly reflects the intrinsic crystal structure of Td-WTe2. The Josephson diode efficiency increases with the Td-WTe2 thickness up to critical thickness, and all junctions, irrespective of the barrier thickness, reveal magneto-chiral characteristics with respect to a mirror plane of Td-WTe2. Our results, together with the twist-angle-tuned magneto-chirality of a Td-WTe2 double-barrier junction, show that two-dimensional materials promise vertical Josephson diodes with high efficiency and tunability.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献