Abstract
AbstractLateral non-uniform subduction is impacted by continuous plate segmentation owing to vertical tearing of the subducting plate. However, the dynamics and physical controls of vertical tearing remain controversial. Here, we employed 3D numerical models to investigate the effects of trench geometry (offset by a transform boundary) and plate rheology (plate age and the magnitude of brittle/plastic strain weakening) on the evolution of shear stress-controlled vertical tearing within a homogenous subducting oceanic plate. Numerical results suggest that the trench offset geometry could result in self-sustained vertical tearing as a narrow shear zone within the intact subducting oceanic plate, and that this process of tearing could operate throughout the entire subduction process. Further, the critical trench offset length for the maturation of vertical tearing is impacted by plate rheology. Comparison between numerical modelling results and natural observations suggests that vertical tearing attributed to trench offset geometry is broadly developed in modern subduction and collision systems worldwide.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献