Highly efficient, heat dissipating, stretchable organic light-emitting diodes based on a MoO3/Au/MoO3 electrode with encapsulation

Author:

Choi Dae Keun,Kim Dong Hyun,Lee Chang Min,Hafeez HassanORCID,Sarker SubrataORCID,Yang Jun Su,Chae Hyung Ju,Jeong Geon-Woo,Choi Dong Hyun,Kim Tae Wook,Yoo Seunghyup,Song Jinouk,Ma Boo Soo,Kim Taek-Soo,Kim Chul Hoon,Lee Hyun Jae,Lee Jae WooORCID,Kim DonghyunORCID,Bae Tae-Sung,Yu Seung Min,Kang Yong-Cheol,Park Juyun,Kim Kyoung-Ho,Sujak MuhammadORCID,Song MyungkwanORCID,Kim Chang-SuORCID,Ryu Seung YoonORCID

Abstract

AbstractStretchable organic light-emitting diodes are ubiquitous in the rapidly developing wearable display technology. However, low efficiency and poor mechanical stability inhibit their commercial applications owing to the restrictions generated by strain. Here, we demonstrate the exceptional performance of a transparent (molybdenum-trioxide/gold/molybdenum-trioxide) electrode for buckled, twistable, and geometrically stretchable organic light-emitting diodes under 2-dimensional random area strain with invariant color coordinates. The devices are fabricated on a thin optical-adhesive/elastomer with a small mechanical bending strain and water-proofed by optical-adhesive encapsulation in a sandwiched structure. The heat dissipation mechanism of the thin optical-adhesive substrate, thin elastomer-based devices or silicon dioxide nanoparticles reduces triplet-triplet annihilation, providing consistent performance at high exciton density, compared with thick elastomer and a glass substrate. The performance is enhanced by the nanoparticles in the optical-adhesive for light out-coupling and improved heat dissipation. A high current efficiency of ~82.4 cd/A and an external quantum efficiency of ~22.3% are achieved with minimum efficiency roll-off.

Funder

Ministry of Knowledge Economy | Korea Institute of Energy Technology Evaluation and Planning

Ministry of Trade, Industry and Energy

National Research Foundation of Korea

Ministry of Education

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3