Abstract
AbstractDespite the potentially higher energy density and improved safety of solid-state batteries (SSBs) relative to Li-ion batteries, failure due to Li-filament penetration of the solid electrolyte and subsequent short circuit remains a critical issue. Herein, we show that Li-filament growth is suppressed in solid-electrolyte pellets with a relative density beyond ~95%. Below this threshold value, however, the battery shorts more easily as the density increases due to faster Li-filament growth within the percolating pores in the pellet. The microstructural properties (e.g., pore size, connectivity, porosity, and tortuosity) of $$75\%{{{{{\rm{L}}}}}}{{{{{{\rm{i}}}}}}}_{2}{{{{{\rm{S}}}}}}-25\%{{{{{{\rm{P}}}}}}}_{2}{{{{{{\rm{S}}}}}}}_{5}$$
75
%
L
i
2
S
−
25
%
P
2
S
5
with various relative densities are quantified using focused ion beam–scanning electron microscopy tomography and permeability tests. Furthermore, modeling results provide details on the Li-filament growth inside pores ranging from 0.2 to 2 μm in size. Our findings improve the understanding of the failure modes of SSBs and provide guidelines for the design of dendrite-free SSBs.
Funder
DOE | Office of Energy Efficiency and Renewable Energy
DOE | Office of Science
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献